3.7.47 \(\int \frac {\sec ^{\frac {7}{2}}(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx\) [647]

Optimal. Leaf size=312 \[ -\frac {a \sqrt {\frac {b+a \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{4 b d \sqrt {a+b \sec (c+d x)}}+\frac {\left (3 a^2+4 b^2\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \Pi \left (2;\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{4 b^2 d \sqrt {a+b \sec (c+d x)}}+\frac {3 a E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{4 b^2 d \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}}-\frac {3 a \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{4 b^2 d}+\frac {\sec ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{2 b d} \]

[Out]

-1/4*a*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1/2))*(
(b+a*cos(d*x+c))/(a+b))^(1/2)*sec(d*x+c)^(1/2)/b/d/(a+b*sec(d*x+c))^(1/2)+1/4*(3*a^2+4*b^2)*(cos(1/2*d*x+1/2*c
)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2,2^(1/2)*(a/(a+b))^(1/2))*((b+a*cos(d*x+c))/(a+b)
)^(1/2)*sec(d*x+c)^(1/2)/b^2/d/(a+b*sec(d*x+c))^(1/2)+1/2*sec(d*x+c)^(3/2)*sin(d*x+c)*(a+b*sec(d*x+c))^(1/2)/b
/d+3/4*a*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1/2))
*(a+b*sec(d*x+c))^(1/2)/b^2/d/((b+a*cos(d*x+c))/(a+b))^(1/2)/sec(d*x+c)^(1/2)-3/4*a*sin(d*x+c)*sec(d*x+c)^(1/2
)*(a+b*sec(d*x+c))^(1/2)/b^2/d

________________________________________________________________________________________

Rubi [A]
time = 0.59, antiderivative size = 312, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 13, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.520, Rules used = {3945, 4187, 4193, 3944, 2886, 2884, 4120, 3941, 2734, 2732, 3943, 2742, 2740} \begin {gather*} \frac {\left (3 a^2+4 b^2\right ) \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \Pi \left (2;\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{4 b^2 d \sqrt {a+b \sec (c+d x)}}-\frac {3 a \sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}{4 b^2 d}+\frac {3 a \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{4 b^2 d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}+\frac {\sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)}}{2 b d}-\frac {a \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{4 b d \sqrt {a+b \sec (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^(7/2)/Sqrt[a + b*Sec[c + d*x]],x]

[Out]

-1/4*(a*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[Sec[c + d*x]])/(b*d*Sqrt
[a + b*Sec[c + d*x]]) + ((3*a^2 + 4*b^2)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*a)/(
a + b)]*Sqrt[Sec[c + d*x]])/(4*b^2*d*Sqrt[a + b*Sec[c + d*x]]) + (3*a*EllipticE[(c + d*x)/2, (2*a)/(a + b)]*Sq
rt[a + b*Sec[c + d*x]])/(4*b^2*d*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*Sqrt[Sec[c + d*x]]) - (3*a*Sqrt[Sec[c + d*
x]]*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(4*b^2*d) + (Sec[c + d*x]^(3/2)*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*
x])/(2*b*d)

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 2886

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/
(c + d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 3941

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3943

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[Sqrt[d*C
sc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/Sqrt[a + b*Csc[e + f*x]]), Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3944

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[d*Sqrt
[d*Csc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/Sqrt[a + b*Csc[e + f*x]]), Int[1/(Sin[e + f*x]*Sqrt[b + a*Sin[e + f
*x]]), x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3945

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*d^2*
Cos[e + f*x]*(d*Csc[e + f*x])^(n - 2)*(Sqrt[a + b*Csc[e + f*x]]/(b*f*(2*n - 3))), x] + Dist[d^3/(b*(2*n - 3)),
 Int[((d*Csc[e + f*x])^(n - 3)/Sqrt[a + b*Csc[e + f*x]])*Simp[2*a*(n - 3) + b*(2*n - 5)*Csc[e + f*x] - 2*a*(n
- 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && GtQ[n, 2] && IntegerQ[2*n
]

Rule 4120

Int[(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(
b_.) + (a_)]), x_Symbol] :> Dist[A/a, Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Dist[(A*b -
a*B)/(a*d), Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && Ne
Q[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]

Rule 4187

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-C)*d*Cot[e + f*x]*(a + b*Csc[e + f*x])^(
m + 1)*((d*Csc[e + f*x])^(n - 1)/(b*f*(m + n + 1))), x] + Dist[d/(b*(m + n + 1)), Int[(a + b*Csc[e + f*x])^m*(
d*Csc[e + f*x])^(n - 1)*Simp[a*C*(n - 1) + (A*b*(m + n + 1) + b*C*(m + n))*Csc[e + f*x] + (b*B*(m + n + 1) - a
*C*n)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, m}, x] && NeQ[a^2 - b^2, 0] && GtQ[n, 0]

Rule 4193

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d
_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]), x_Symbol] :> Dist[C/d^2, Int[(d*Csc[e + f*x])^(3/2)/Sqrt[a +
 b*Csc[e + f*x]], x], x] + Int[(A + B*Csc[e + f*x])/(Sqrt[d*Csc[e + f*x]]*Sqrt[a + b*Csc[e + f*x]]), x] /; Fre
eQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {\sec ^{\frac {7}{2}}(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx &=\frac {\sec ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{2 b d}+\frac {\int \frac {\sqrt {\sec (c+d x)} \left (a+2 b \sec (c+d x)-3 a \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx}{4 b}\\ &=-\frac {3 a \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{4 b^2 d}+\frac {\sec ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{2 b d}+\frac {\int \frac {\frac {3 a^2}{2}+a b \sec (c+d x)+\frac {1}{2} \left (3 a^2+4 b^2\right ) \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx}{4 b^2}\\ &=-\frac {3 a \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{4 b^2 d}+\frac {\sec ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{2 b d}+\frac {1}{8} \left (4+\frac {3 a^2}{b^2}\right ) \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx+\frac {\int \frac {\frac {3 a^2}{2}+a b \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx}{4 b^2}\\ &=-\frac {3 a \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{4 b^2 d}+\frac {\sec ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{2 b d}+\frac {(3 a) \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx}{8 b^2}-\frac {a \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+b \sec (c+d x)}} \, dx}{8 b}+\frac {\left (\left (4+\frac {3 a^2}{b^2}\right ) \sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sec (c+d x)}{\sqrt {b+a \cos (c+d x)}} \, dx}{8 \sqrt {a+b \sec (c+d x)}}\\ &=-\frac {3 a \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{4 b^2 d}+\frac {\sec ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{2 b d}-\frac {\left (a \sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {b+a \cos (c+d x)}} \, dx}{8 b \sqrt {a+b \sec (c+d x)}}+\frac {\left (\left (4+\frac {3 a^2}{b^2}\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}\right ) \int \frac {\sec (c+d x)}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{8 \sqrt {a+b \sec (c+d x)}}+\frac {\left (3 a \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {b+a \cos (c+d x)} \, dx}{8 b^2 \sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)}}\\ &=\frac {\left (4+\frac {3 a^2}{b^2}\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \Pi \left (2;\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{4 d \sqrt {a+b \sec (c+d x)}}-\frac {3 a \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{4 b^2 d}+\frac {\sec ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{2 b d}-\frac {\left (a \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{8 b \sqrt {a+b \sec (c+d x)}}+\frac {\left (3 a \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}} \, dx}{8 b^2 \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}}\\ &=-\frac {a \sqrt {\frac {b+a \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{4 b d \sqrt {a+b \sec (c+d x)}}+\frac {\left (4+\frac {3 a^2}{b^2}\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \Pi \left (2;\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{4 d \sqrt {a+b \sec (c+d x)}}+\frac {3 a E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{4 b^2 d \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}}-\frac {3 a \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{4 b^2 d}+\frac {\sec ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{2 b d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 14.05, size = 397, normalized size = 1.27 \begin {gather*} \frac {\sqrt {\sec (c+d x)} \left (4 a b^2 \sqrt {\frac {b+a \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )+b \left (9 a^2+8 b^2\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \Pi \left (2;\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )+\frac {3 i \sqrt {-\frac {a (-1+\cos (c+d x))}{a+b}} \sqrt {\frac {a (1+\cos (c+d x))}{a-b}} \sqrt {b+a \cos (c+d x)} \csc (c+d x) \left (-2 b (a+b) E\left (i \sinh ^{-1}\left (\sqrt {\frac {1}{a-b}} \sqrt {b+a \cos (c+d x)}\right )|\frac {-a+b}{a+b}\right )+a \left (2 b F\left (i \sinh ^{-1}\left (\sqrt {\frac {1}{a-b}} \sqrt {b+a \cos (c+d x)}\right )|\frac {-a+b}{a+b}\right )+a \Pi \left (1-\frac {a}{b};i \sinh ^{-1}\left (\sqrt {\frac {1}{a-b}} \sqrt {b+a \cos (c+d x)}\right )|\frac {-a+b}{a+b}\right )\right )\right )}{\sqrt {\frac {1}{a-b}}}+2 b (2 b-3 a \cos (c+d x)) (b+a \cos (c+d x)) \sec (c+d x) \tan (c+d x)\right )}{8 b^3 d \sqrt {a+b \sec (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^(7/2)/Sqrt[a + b*Sec[c + d*x]],x]

[Out]

(Sqrt[Sec[c + d*x]]*(4*a*b^2*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)] + b*(9*a
^2 + 8*b^2)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*a)/(a + b)] + ((3*I)*Sqrt[-((a*(-
1 + Cos[c + d*x]))/(a + b))]*Sqrt[(a*(1 + Cos[c + d*x]))/(a - b)]*Sqrt[b + a*Cos[c + d*x]]*Csc[c + d*x]*(-2*b*
(a + b)*EllipticE[I*ArcSinh[Sqrt[(a - b)^(-1)]*Sqrt[b + a*Cos[c + d*x]]], (-a + b)/(a + b)] + a*(2*b*EllipticF
[I*ArcSinh[Sqrt[(a - b)^(-1)]*Sqrt[b + a*Cos[c + d*x]]], (-a + b)/(a + b)] + a*EllipticPi[1 - a/b, I*ArcSinh[S
qrt[(a - b)^(-1)]*Sqrt[b + a*Cos[c + d*x]]], (-a + b)/(a + b)])))/Sqrt[(a - b)^(-1)] + 2*b*(2*b - 3*a*Cos[c +
d*x])*(b + a*Cos[c + d*x])*Sec[c + d*x]*Tan[c + d*x]))/(8*b^3*d*Sqrt[a + b*Sec[c + d*x]])

________________________________________________________________________________________

Maple [C] Result contains complex when optimal does not.
time = 0.20, size = 1755, normalized size = 5.62

method result size
default \(\text {Expression too large to display}\) \(1755\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^(7/2)/(a+b*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/4/d*(-3*cos(d*x+c)^3*sin(d*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*Ellip
ticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^2+3*cos(d*x+c)^3*sin(d*x+c)*((b+a*
cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)
/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a*b-6*cos(d*x+c)^3*sin(d*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*
(1/(1+cos(d*x+c)))^(1/2)*EllipticPi((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(a+b)/(a-b),I/((a-b)/(a+b))
^(1/2))*a^2-8*cos(d*x+c)^3*sin(d*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*E
llipticPi((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2))*b^2+6*cos(d*x+c)^3
*sin(d*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))*(
(a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^2-2*cos(d*x+c)^3*sin(d*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x
+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a
-b))^(1/2))*a*b+4*cos(d*x+c)^3*sin(d*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/
2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*b^2-3*cos(d*x+c)^2*sin(d*x+c
)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b
))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^2+3*cos(d*x+c)^2*sin(d*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b)
)^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2)
)*a*b-6*cos(d*x+c)^2*sin(d*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*Ellipti
cPi((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2))*a^2-8*cos(d*x+c)^2*sin(d
*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticPi((-1+cos(d*x+c))*((a-b)
/(a+b))^(1/2)/sin(d*x+c),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2))*b^2+6*cos(d*x+c)^2*sin(d*x+c)*((b+a*cos(d*x+c))/(1
+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-
(a+b)/(a-b))^(1/2))*a^2-2*cos(d*x+c)^2*sin(d*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+
c)))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a*b+4*cos(d*x+c)^2*s
in(d*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))*((a
-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*b^2+3*cos(d*x+c)^3*((a-b)/(a+b))^(1/2)*a^2-2*cos(d*x+c)^3*((
a-b)/(a+b))^(1/2)*a*b-3*cos(d*x+c)^2*((a-b)/(a+b))^(1/2)*a^2+3*cos(d*x+c)^2*((a-b)/(a+b))^(1/2)*a*b-2*cos(d*x+
c)^2*((a-b)/(a+b))^(1/2)*b^2-cos(d*x+c)*((a-b)/(a+b))^(1/2)*a*b+2*((a-b)/(a+b))^(1/2)*b^2)*((b+a*cos(d*x+c))/c
os(d*x+c))^(1/2)*(1/cos(d*x+c))^(7/2)*cos(d*x+c)^2/sin(d*x+c)/(b+a*cos(d*x+c))/((a-b)/(a+b))^(1/2)/b^2

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(7/2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sec(d*x + c)^(7/2)/sqrt(b*sec(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(7/2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**(7/2)/(a+b*sec(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(7/2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sec(d*x + c)^(7/2)/sqrt(b*sec(d*x + c) + a), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{7/2}}{\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1/cos(c + d*x))^(7/2)/(a + b/cos(c + d*x))^(1/2),x)

[Out]

int((1/cos(c + d*x))^(7/2)/(a + b/cos(c + d*x))^(1/2), x)

________________________________________________________________________________________